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Abstract.

A set of sigma-pi units randomly connected to two input vectors forms a type

of hetero-associator related to convolution- and matrix-based associative memories.

Associations are represented as patterns of activity rather than connection strengths.

Decoding the associations requires another network of sigma-pi units, with connectivity

dependent on the encoding network. Learning the connectivity of the decoding

network involves setting n
3 parameters (where n is the size of the vectors), and can

be accomplished in approximately 3e n logn presentations of random patterns. This

type of network encodes information in activation values rather than in weight values,

which makes the information about relationships accessible to further processing. This

accessibility is essential for higher-level cognitive tasks such as analogy processing. The

fact that random networks can perform useful operations makes it more plausible that

these types of associative networks could have arisen in the nervous systems of natural

organisms during the course of evolution.
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Figure 1. Analogy tasks. (a) is an example of the common verbal analogies of the type

A is to B as C is to what? (b) is a task solved by the COPYCAT system (Hofstadter and

Mitchell 1994). (c) is a task presented to human subjects in a PET scan study intended

to identify regions of the brain involved in processing analogies. The task was to choose

the arrangement analogous to the base arrangement. (Wharton, Grafman, Flitman,

Hansen, Bruaner, Marks, and Honda 1998). (d) is a task presented to chimpanzees;

the task was to place the symbol for \same" or \di�erent" in the center of the �gure,

depending on whether the relationship between the pair of objects on the left is the

same as the relationship between the pair of objects on the right (Oden, Thompson,

and Premack 1998).

1. Introduction

The ability to reason about knowledge itself is one of the hallmarks of higher-

level cognitive processing. The knowledge structures involved can range from simple

associations or relations, e.g., as in the analogy tasks shown in Figure 1, to the rules

of reasoning itself. Any theory of higher-level cognitive processing must eventually

address how complex knowledge structures can be represented, combined, compared,

and otherwise processed.

One candidate theory of higher-level cognitive processing begins with the ideas

that concepts can be represented as distributed patterns of neuronal activity, and that

relationships between concepts can be represented as associations in an associative

memory (Willshaw, Buneman, and Longuet-Higgins 1969; Hinton 1989; Rumelhart,

McClelland, and the PDP research group 1986). However, when we consider the

requirement of higher-level processing that relationships themselves must be examinable,

a problem immediately arises: knowledge about relationships is hidden in the weights

of the network and is inaccessible to further analysis or processing. This initial problem

is easily overcome by formulating associative memories so that associations are encoded

in activation values rather than weights. These types of associative memories are more

like an adder or arithmetic logic unit in a von Neumann computer than like traditional

memory. They can be used dynamically to create new knowledge structures from old

ones rather than merely storing knowledge as static associations for later retrieval.
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Because associations are represented in patterns of activity, they are available for

processing, allowing higher-level tasks, such as analogies, to be accomplished (Halford,

Wilson, and Phillips 1998; Gayler 1998; Kanerva 2000; Plate 1994a; Plate 2000).

However, these memories that store associations in activation patterns face a more

serious plausibility gap: it is diÆcult to see how the intricate and precise patterns of

connectivity they utilize could have evolved in natural organisms. This paper shows

that associative memories actually do not require intricate and precise patterns of

connectivity. In fact, a randomly connected network of sigma-pi units, with some

conditions on the density and nature of connections, turns out to constitute the encoding

half of a hetero-associative memory { it can encode the association of two patterns.

The corresponding network required to decode the associations (i.e., to retrieve one

pattern given the other) has complementary connections, which can be learnt by a

simple algorithm in a reasonable amount of time.

2. Associative memories

Pairwise associations between patterns are an interesting form of knowledge because

they are both richly productive and simple. Various authors, e.g., Plate (1995), Plate

(2000), Gayler (1998), and Kanerva (2000), have shown how pairwise associations,

encoded using any one of a variety of associative memory schemes, can be used as

the basis for representing and processing more complex knowledge, allowing analogy

problems like those in Figure 1 to be solved.

Pairwise associations can be learned by many types of neural networks, including

feedforward networks trained via backpropagation (slow learning) (Rumelhart, Hinton,

and Williams 1986) and hetero-associative memory networks (one-shot learning), such

as Willshaw, Buneman, and Longuet-Higgins's (1969) associative network. In both

feedforward and associative networks, the knowledge about associations can be used to

produce one element of a pair given the other, but cannot be examined or manipulated.

In order for knowledge to be manipulated, e.g., passed to other networks for further

processing, it must be encoded in the activation values of neurons rather than in

the connection strengths. Such a pattern of activations that can encode a number

of associations is refered to in this paper as a memory trace.

It is possible to formulate auto- and hetero-associative memory networks so that

associations are encoded in activation values rather than weights. This requires neurons

to be connected in a sparse and very precise and regular fashion. For example, matrix-

based memories, such as Willshaw et al 's (1969) associative nets and Smolensky's

(1990) tensor product memories, can be formulated as a network of sigma-pi neurons

that are connected in patterns corresponding to the computation of an outer-product.

(Sigma-pi units compute a sum of products of inputs.) Convolution-based memories

such as Willshaw, Buneman, and Longuet-Higgins's (1969) non-linear correlograph,

Murdock's (1982) todam, and Plate's (1995) Holographic Reduced Representations

(HRRs) are naturally formulated in terms of sigma-pi neurons where information about
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associations is encoded in activations rather than weights. The required connectivity

of neurons corresponds to correlation or convolution formulas. Thus, both matrix-

and convolution-based schemes require precise patterns of interconnection, and in the

convolution-based schemes the patterns are intricate as well as precise.

Willshaw et al 's (1969) non-linear correlograph is one of the �rst examples of

associative memories in the literature (see also Willshaw (1989)). It encodes associations

between binary patterns into binary traces, and uses correlation and convolution

formulas for encoding and decoding associations. Like other convolution/correlation-

based memories, it involves intricate and precise arrangements of connections. As the

association networks described in this paper can be seen as a randomly-connected version

of the non-linear correlograph, it is useful to review the characteristics of the non-linear

correlograph.

Willshaw, Buneman, and Longuet-Higgins (1969) show that the maximum

information capacity of the non-linear correlograph is 0:693n, where n is the number

of bits in both patterns and traces. This means that the non-linear correlograph can

function at an information eÆciency of 69%, since n bits of information are stored in

the trace. This maximum information capacity is achieved when 0:693n=(log2 n)
2 pairs

of very sparse patterns are stored; patterns have a density of m = log2 n bits, i.e., only

log2 n out of n bits are on.

This is the same information eÆciency (measured in information stored per

parameter) as Willshaw et al's better-known associative network, a matrix-based

associative memory with binary weights. The associative network has a higher capacity

for a given vector size, reecting its corresponding higher resource requirements. It can

store more pairs of patterns of a given size because it has n2 binary weights rather than

the n binary parameters in the non-linear correlograph.

3. Random Sigma-Pi Associators

3.1. Encoding network

In the non-linear correlograph the elements of the trace and the elements of the decoded

pattern can be computed by sigma-pi units: they are both thresholded sums of products.

The connectivity of these sigma-pi units is highly ordered: the kth unit of the trace is

computed as

zk = h

0
@n�1X
j=0

xjyk�j

1
A (1)

where h(x) is the threshold function h(x) = 1 8 x > 0 and h(x) = 0 otherwise.

Consider what happens when the correlation formula for encoding in the non-linear

correlograph is replaced by a sum of random products:

zk = h

0
@X

ij

wkijxiyj

1
A (2)
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where wkij, which randomly takes a value of 0 or 1, de�nes the connectivity of the

encoding network. We can also allow for the trace, z to have di�erent dimensionality

to x. Let T be the number of elements in the trace. Also, let Gn2 be the total number

of products involved in all the zi's. This means that Pr(wkij = 1) = G=T . The average

number of products in each of the zi's is Gn
2
=T . Figure 2 shows the connectivity in an

example random sigma-pi encoding network for T = 7, n = 4, and G = 1.

Encoding:

z0 = h(x1y3 + x3y3 + x2y1 + x3y0)

z1 = h(x1y3 + x2y1)

z2 = h(x0y0 + x1y1 + x1y0)

z3 = h(x3y0 + x2y3 + x2y0)

z4 = h(x0y1)

z5 = h(x2y1 + x1y1)

z6 = h(x2y3 + x1y3)

Decoding:

s
0

0 = z2y0 + z4y1

s
0

1 = z0y3 + z1y3 + z2y1 + z2y0 + z5y1 + z6y3

s
0

2 = z0y1 + z1y1 + z3y3 + z3y0 + z5y1 + z6y3

s
0

3 = z0y3 + z0y0 + z3y0

0 1 2 3 4 5 6

0 1 2 3 0 1 2 3

�
+

x y

z

�
�

�
+

Figure 2. Example of a random sigma-pi encoding network. Nodes labeled with +

perform logical-OR, those labeled with � perform logical-AND. The diagram shows all

connections for zi's that involve x0. Connections shown with thick lines are involved

in the decoding connections for s0

0
, as explained in Section 3.2.

3.2. Decoding network

The trace z from a random encoding network can be decoded by a complementary

network of thresholded sigma-pi units, with threshold � and connectivity de�ned by

vijk:

si = h(si � �); where s
0

i =
X
jk

vijkyjzk: (3)

The connectivity of the decoding network is complementary to that of the encoding

network. The complementarity can be seen by observing that the computation of an s
0

i

can be performed by feeding activation backwards through the encoding network so that

the OR-nodes just act to fan out the value from the z's, and contributions are summed

at the x nodes (these values will be the s
0

i). The connections involved in computing

s
0

0 (as a sum at the node for x0) are shown in bold in Figure 2. The vijk depend in a

simple way on the w's: vijk = wkij. This is because s
0

i should contain terms like xiy
2
j

whenever possible. This can be achieved by including zkyj in s
0

i when yjxi occurs in zk,

i.e., by making vijk = wkij. Note that since the z's are sums of random pairs, xi may

not appear in some zk, and this degrades the �delity of the decoded pattern relative to
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the perfectly ordered binary correlograph. The threshold � is a global parameter, but

could just as well be local to each output neuron of the decoding network. In either

case, it could be learned using the perceptron rule or delta rule for single layer networks

(Hertz, Krogh, and Palmer 1991).

3.3. Decoding Accuracy

The probability of correctly decoding associations in the trace of a random sigma-pi

associator can be worked out with similar steps as for the non-linear correlograph.

Suppose as before that t is the trace resulting from encoding R pairs of patterns,

including the pair x and y. Let s be the pattern resulting from decoding z with y,

i.e., s = decode(z;y). We would like s = x.

First, consider the density of the pattern z resulting from associating x and y, i.e.,

z = encode(x;y). Note that zi is the sum of products like xjyk. There are n
2 such

products, of which m
2 are 1, and each has a G=T chance of being in the sum for zi.

Thus, the probability that zi is 0 is (1� (Gm2)=(Tn2))n
2

Using the same approximation

as before (i.e., (1� �)x � exp(�x�) for small �), we get Pr(zi = 0) � exp(�Gm2
=T ) and

Pr(zi = 1) � 1� exp(
�Gm2

T

): (4)

Now consider t, which is the logical-OR of R patterns like z. The probability that

ti is zero is

Pr(ti = 0) � exp(
�RGm2

T

): (5)

Then, p, the probability that a particular ti is 1 is

p � 1� exp(
�RGm2

T

): (6)

Note that for T = n (a trace with n elements) and G = 1 (an average of n products in

the sum for each trace), this is the same trace density as for the binary correlograph.

Next, consider a particular si, which should have the same value as xi. Recall

that s0i =
P

jk vijkyjtk. There are Tn terms in this sum, and the individual factors in

these terms are binary events with the following probabilities: Pr(vijk = 1) = G=T ,

Pr(yj = 1) = m=n, and Pr(tk = 1) = p. Consider the cases of xi = 0 and xi = 1

separately.

Case 1: xi = 0. Let �0 be the mean of s0i when xi = 0. When xi = 0 the factors

in the terms for s0i are uncorrelated and s
0

i is the sum of Tn random binary values, each

with probability G=T �m=n � p. Thus, s0i has a binomial distribution with �0 = pmG.

Case 2: xi = 1. Let �1 be the mean of s0i when xi = 1. Consider a term vijkyjtk in

s
0

i for which vijk = 1 and yj = 1 (terms for which either of these two conditions are not

true do not contribute to s
0

i). This means that wkij = 1, and thus tk is also 1. Thus,

s
0

i is the sum of Tn random binary values, each with probability G=T �m=n, and has a

binomial distribution with �1 = mG.
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Parameters Trace Elements with Elements with Separation Threshold Number of errors

of net density target 1 target 0 (in �'s) target 1 target 0

n m R p �1 �1 �0 �0 d � E1 (of m) E0 (of n-m)

1024 10 2 0.177 0.178 10 9.98 3.16 3.15 1.77 1.78 1.33 1.34 1.83 1.83 5 0.66 0.66 9.78 10.1

4096 10 3 0.071 0.071 10 10.03 3.16 3.09 0.71 0.71 0.84 0.84 2.32 2.37 5 0.67 0.61 0.38 0.38

4096 15 3 0.152 0.152 15 15.01 3.87 3.74 2.28 2.28 1.51 1.43 2.36 2.46 8 0.58 0.45 2.44 2.33

4096 23 3 0.321 0.321 23 22.94 4.79 4.65 7.39 7.38 2.72 2.66 2.08 2.13 14 0.71 0.66 36.6 34.4

Table 1. Analytically derived and experimentally measured (in italics) means and

standard deviations of the pre-threshold elements of the reconstructed pattern (i.e.,

s
0

i
) for elements with a target of zero and elements with a target of one. The number

of errors is per reconstructed vector, for a threshold chosen to make the expected

number of errors in one-bits (places of the reconstructed vector with a target of one)

just less than one.

The reconstruction of x will be accurate if the average value of s0i is low where xi = 0,

and high where xi = 1, and the threshold is located somewhere between their means.

Let the mean of s0i where xi = 0 be �0 and the mean of s0i where xi = 1 be �1. Both

of these distributions are binomial and can be approximated by a normal distribution.

Under the normal approximation the variances are �0(1��0=n) and �1(1��1=n). As �0

and �1 are small relative to n, we can drop the (1��=n) factors. Let d be the distance,

measured in average standard deviations, between the means of the distributions of s0i's

corresponding to zero and non-zero elements (i.e., �0 and �1). Then, using the normal

approximations, we can calculate d as follows:

d � �1 � �0

1
2
(�1 + �0)

� 2(1� p)

1 +
p
p

p
mG � 2 exp(�RGm2

T
)

1 +
q
1� exp(�RGm2

T
)

p
mG

= 2c
p
mG; where c =

(1� p)

1 +
p
p

=
exp(�RGm2

T
)

1 +
q
1� exp(�RGm2

T
)

(7)

In order to test the accuracy of these approximations, some values of parameters,

and some values of p, �'s and �'s were measured from simulations. These are compared

with the analytically calculated values in Table 1. The experimentally measured

reconstruction accuracy agrees closely with the analytically derived accuracy in all

respects. In all of these cases, T = n (i.e., the trace was the same size as the patterns

being associated) and G = 1 (i.e., there was an average of n products involved in the

sum for each element of the trace). The experimentally measured values, shown in

italics, were computed over 1000 storage and decoding operations in a single randomly

constructed network. E1 and E0 are the average number of errors in a reconstructed

pattern for 1's and 0's respectively. The analytically calculated values for E1 and E0

were calculated using the binomial cumulative probability function. The thresholds used

for both the analytic and experimental �gures were the highest thresholds that resulted

in less than one error in reconstructing 1's (analytically).

Some analysis of the formula for the separation of �0 and �1 can help identify the

usable region of the parameter space of n;m;G; T; R. Consider c in the formula for d
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in Equation 7. The lefthand plot in Figure 3 shows that c varies between 0 and 1 and

is greater than 0:5 for approximately RGm
2
=T < 0:25. The exponential dropo� of c

suggests that in order to achieve anywhere near reasonable separation with G = 1, we

should have m >= 10 (so that
p
mG > 3), and T > RGm

2 (so that c > 0:5), thus

giving d > 3. For �xed R, G, and T , separation is at a maximum for moderately small

values of m, as shown in the right-hand plot in Figure 3.

0

0.25

0.5

0.75

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

RGm
2
=T

p

c

0

1

2

3

4

5

5 10 15 20 25 30
m

d

(a) (b)

Figure 3. (a) Behavior of p and c in the equation for the separation (Eqn 6 and

Eqn 7). (b) The separation d (Eqn 7) plotted against m for R = 3, G = 1, and

T = 4096.

4. Learning the Decoding Network

How could the functional structure of the decoding network be constructed in a neurally-

plausible manner? As explained in Section 3.2, if the connectivity of the encoding

network is de�ned by an assignment of 0's and 1's to wkij (a \1" means that the

product xiyj of elements of the input patterns is involved in the sum for the k'th

element of the trace pattern; and a \0" means that the product xiyj is not involved

in that sum for the k'th element of the trace pattern), then the corresponding decoding

network has connectivity similarly de�ned by vijk, with vijk = wkij. Although this

decoding connectivity maps onto the encoding connectivity if connections are reversed,

connections in biological neural networks are one-way, so propagating activation values

backwards through the encoding network is not plausible. Thus, a separate network

must be used. This decoding network must be accurately set up to correspond to the

encoding network. It turns out that a suitable decoding network can be learnt using a

simple rule in a number of training passes that is surprisingly small given the number

of parameters to be learnt.

The learning begins with a completely connected decoding network, i.e., vijk =

1 8 ijk, and proceeds by setting the v's to 0 based on the presentations of random

patterns. First, generate random patterns x and y. Second, put these through the

encoding network to obtain pattern z = encode(x;y). Finally, present the pair y, z to

the inputs of the decoding network, and x to the outputs of the decoding network. If

xi and yj are 1, and zk is 0, then set vijk to 0 (because wkij must be 0, otherwise zk

would be 1). Since Pr(zk = 0) = exp(�Gm2
=T ) and Pr(xi = 1) = Pr(yj = 1) = m=n,
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the probability that we can set vijk to zero (if it should be) is m2
=n

2 exp(�Gm2
=T ).

This rule will never set vijk to 0 when it should be 1. Thus the probability that vijk has

the wrong value at the end of Q trials (i.e., Q presentations of random patterns) is as

follows:  
1� m

2

n
2
exp(�Gm

2

T

)

!Q
:

We would like this to be small, say 1
Tn2

, so that on average only one of the vijk is wrong

after Q learning trials. Using the approximation log(1� �) = �� for small �, we get

Q =
n
2 log(n2T ) exp(Gm2

=T )

m
2

: (8)

For n = 4096, m = 15, G = 1, and T = 4096, this gives a learning time of 1.97

million trials.

However, the learning time depends on m, and a higher m (i.e., greater density of

one's in x and y) can result in faster training. To �nd the value of m which minimizes

the learning time Q, we can �rst �nd the derivative of Q with respect to m:

dQ

dm
=

2n2

m

log(n2T ) exp(
Gm

2

T

)

�
G

T

� 1

m
2

�
: (9)

Thus Q has a minimum at m =
q
T=G, at which point we have

Q = n
2
=T log(n2T )e (10)

When G = 1 and T = n, the minimum number of learning trials is 3 G n e logn,

which for the example of n = 4096 is 280,000 learning trials. Considering there are

40963 = 6:8 � 1010 parameters to be set, this is a small number of trials for a one-

o� exercise. A system that learned from encoding and decoding internally generated

random patterns (with the optimal density for learning) at the rate of one pair of

patterns per second could learn the decoding connectivity for this size network in 78

hours.

5. Comparison to Matrix- and Convolution-Based Associators

Both matrix and convolution-based associators are special cases of sigma-pi associators,

with highly regular connectivities. Convolution-based associators have T = n, G = 1,

and wkij = 1 if j = k� i mod n. Each product xiyj occurs once in only one zk, each zk is

the sum of exactly n products, and xi and yj appear in exactly one product in each zk.

Matrix-based associators have T = n
2, G = 1, and wkij = 1 if k = in + j. Each of the

n
2
zk's consists of a single product, and there is one for each xiyj pair. The parameters

and properties of these various styles of associators are summarized in Table 2.

The highly ordered nature of matrix- and convolution-based memories results

in more accurate reconstructions and higher information capacity than their random

cousins. For example, a non-linear correlograph with n = 4096 and m = 12 can encode

associations between 19 pairs of patterns and have an average of less than 1 error
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Associative net Convolution/ Random Sigma-Pi

(Matrix-style) Correlation

In general

T (size of trace) n
2

n n (can vary)

G = (total # of products in trace)=n2 1 1 1 (can vary)

# of products involved 1 n n on average

in each element of trace (varies with G & T )

wkij = 1 : : : i� k = in+ j i� with prob. 1=n (prob.

encoding connectivity j = k � i mod n varies with G & T )

m (# of 1's in patterns) log2 n log2 n > log2 n

(optimized for info. eÆciency)

Max. information eÆciency 69% 69% <<69%

Information eÆciency

in a particular example

n (size of patterns) 4,096 4,096 4,096

m (# of 1's in patterns) 12 12 15

T (size of trace) 16,777,216 4,096 4,096

p (density of 1's in trace) 0.5 0.5 0.152

R (# of pairs) 80,757 19 3

Information stored (bits) 11,629,080 2,736 540

(approximate)

Information eÆciency 69% 69% 13.2%

Table 2. Comparison of Willshaw et al 's (1969) associative net (a matrix-style

associative memory with binary traces), a convolution/correlation associator (a non-

linear correlograph), and random sigma-pi associators. The equations underlying the

numbers given for the associative net are from Willshaw et al .

in reconstructed 0's (all the 1's are guaranteed to be reconstructed correctly). This

corresponds to the storage of about 2736 bits in a trace of 4096 bits. In contrast, a

random sigma-pi associator with n = 4096, G = 1, and T = 4096 (i.e., the same

pattern size, trace size, and connection density, but with random connectivity) can

encode associations between 3 pairs of patterns with m = 15 and have an average of less

than 1 error in reconstructed 0's and 1's. This corresponds to the storage of about 540

bits of information in a trace of 4096 bits. Thus, for this size of associator, the ordered

nature of the connections in the non-linear correlograph appears to give about a 5-fold

increase in information eÆciency.

6. Storage of Dynamic and Structured Information

Random sigma-pi networks constitute a workable (though not not optimally eÆcient)

network that can encode associations in the activation values of neurons. They can be
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used to encode small chunks of knowledge, e.g., several pairwise associations, in a form

that is amenable to being stored in and manipulated by other networks. These type

of encoding networks are useful in the encoding of recursive structure and in encoding

knowledge in such a way that it can be examined for further processing. That these

random networks work at all is surprising and provides an avenue by which associative

memory mechanisms that encode information in activations could have arisen in the

brain. This avenue becomes even more plausible when one notices that the encoding part

of the network (i.e., the random part) could be useful by itself, as a means for recording

conjunctions of feature patterns, which in turn can support recognition processes (Mel

and Fiser 2000).

In an extensive review of the information processing capabilities of dendritic trees,

Mel (1994) comes to the conclusion that the computational capabilities of real neurons

are more like sigma-pi units than thresholded linear units. Local e�ects within the

dendritic tree can result in activation at nearby synapses having a non-linear e�ect.

Overall, this can lead to the dendritic tree computing the sum of the boolean AND

function of sets of nearby inputs. This suggests that the random sigma-pi associative

memory networks discussed in this paper could map straightforwardly onto neural tissue.

In considering how such networks could develop, several important questions arise. For

the encoding networks, the major question is how the synapses could develop so that

the sets of synapses involved in products always involved two connections: one from

one pattern and one from the other. For the decoding network there are several further

questions. How could a suÆciently rich set of possible connections be available? Is

there a way that the learning rule for removing unnecessary connections in the decoding

network (described in Section 4) could be implemented in real neural tissue?

Conventional convolution- and matrix-based memories are special cases of the

random sigma-pi networks presented in this paper. Thus, sigma-pi networks provide

a general framework for associative memories, with the connection density being one

dimension of variation, and the orderedness of connectivity being another, independent,

dimension of variation. In fact, the space of associative memory schemes that can be

described as sigma-pi networks is surprisingly rich. If the sigma operation is extended to

other types of multiplication, the space also includes several recently discovered schemes

that require only element-wise multiplication of patterns: Plate's (1994a) frequency-

domain HRRs, in which patterns have complex values on the unit circle, and Kanerva's

(1996) binary spatter codes, which work with binary patterns. Both of these schemes

have small G (the total number of products involved in the encoding, relative to

the number required for convolution and outer-product encoders) and require only n

operations, which can be performed in parallel, for encoding and decoding.

Storing associations in unit activations means that associations are, in the

terminology of programming, �rst class objects. They can potentially be manipulated

and processed in the same manner as other patterns, rather than being hidden in slowly

changing connection strengths. This ability to dynamically process associations, and

possibly involve them in further recursive associations, is essential in an information
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processing system that must deal with dynamic and complex knowledge structures,

as does the human brain. Various authors, including Murdock (1982), Smolensky

(1990), Pollack (1990), Plate (1994a), Plate (1995), Plate (2000), Halford et al (1994),

Halford et al (1998), Gayler (1998), and Kanerva (2000), have
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