
AAAI Symposium 2004 1

Representing structured relational
data in Euclidean vector spaces

Tony Plate

tplate@acm.org
http://www.d-reps.org

October 2004

AAAI Symposium 2004 2

Overview

• A general method for representing structured

relational data in finite dimensional Euclidean

vector spaces (“flat” vectors)

• Interesting properties: similarity, transformations,

etc.

• Learning

• Relationships to structural kernel methods

• Potential large-scale benchmark problems

AAAI Symposium 2004 3

Motivation
• Intuition is that connectionist-style models feel more right

than symbolic models
– flat vector representations can capture gradations of meaning

– have techniques for learning

• learning the flat vector representations

• learning to perform tasks using those representations

• Fodor & Pylyshyn had some valid points; claims:
– compositionality is important

• recursion, role-filler bindings

– no good connectionist representation for compositional structure

– any connectionist representation will be just implementation details

• Questions I tried to answer
– how can compositional structure be represented in flat vectors?

– is this anything more than implementation details in a symbolic
system?

AAAI Symposium 2004 4

How to represent structured relational
data in Euclidean vector spaces

• Vector space representations typically have:

– vector addition (superposition)

– scalar multiplication

– distance function

– normalization (sometimes)

• To represent structure, also need:

– vector multiplication (for binding)

AAAI Symposium 2004 5

Binding to represent structure

• Consider representing relational structure, e.g.,

(bit fido john)

• Superposition (I.e., bite+john+fido) not suitable -

- looses binding info

• With a binding operation (as well as

superposition) can use role filler bindings:
agent * fido + object * john

• Can also represent sequences, e.g., abc:
p1*a+p2*b+p3*c or a+a*b+a*b*c

AAAI Symposium 2004 6

Properties of binding operation

• a*b must not be similar to a or b (in contrast to

superposition)

• nice if a*b is similar to a*b’ to extent that b is
similar to b’

• want inverse so that a-1*(a*b) = a (or approx)

• can have arbitrary numbers of roles in relations

• if a*b is a vector of same dimension as a and b
can have recursive relations:

(believe mary (bit fido john))

AAAI Symposium 2004 7

Implementing binding (multiplication)

• Holographic Reduced Representations in
frequency space

• Rotor values (xi is a complex value)

• Useful normalization is unit magnitude |xi|=1

• Vector multiplication is elementwise multiplication
-- addition of phase angles

z = x * y if zi = xi * yi

• Superposition is elementwise addition --
corresponds to midpoint
of phase angles

* =αy αz

αx

αz = αx + αy

+ =αy αz

αx

AAAI Symposium 2004 8

Summary of operations

• Vectors: elements are phase angles

• Superposition: averaging of phase angles

• Binding: addition of phase angles

• Normalization: all elements have unit magnitude

• Similarity: sum of cosines of elementwise angle
differences

• Represent relational structure by superposition of
role-filler bindings

• Decode structures using inverse of binding

AAAI Symposium 2004 9

Similar systems

• Binary Spatter Codes (Pentti Kanerva 1996)

• Multiplicative binding (Ross Gayler 1998)

• APNNs & Context dependent thinning (Dmitri

Rachkovskij & Ernst Kussul 2001)

AAAI Symposium 2004 10

Interesting properties

• Similarity -- design representation to have desired

similarity properties

• Fast (linear time) methods for:

– Similarity (dot-product)

– Structure transformations

– Identification of corresponding entities

AAAI Symposium 2004 11

Designing similarity

• “Natural” similarity over relational structure:
– similar entities contributes to similarity

– similar structure contributes to similarity

– similar entities in similar roles contributes to similarity

• Get this with role-filler binding representations, if we add
in fillers:

bite + fido + john + agent*fido + object*john
• Can use this scheme recursively

• These representations for hierarchical structures can
model human performance on analog recall
– similarity is sensitive to both contents and structure

– see Plate 2003

AAAI Symposium 2004 12

Fast operations

• Similarity – dot product similarity reflects structural and
surface similarity

• Can do structure transformations with learning or with
straightforward vector algebra

(rel1 x y) → (rel2 y x)

agt1*x+obj1*y → agt2*y+obj2*x
transforming vector is (agt1

-1*obj2+obj1-1*agt2)

• Identification of corresponding entities

E.g., x is involved in structure A, what is in the
corresponding position in structure B?

(x-1*A)-1*B

AAAI Symposium 2004 13

Learning

• Theoretically easy to incorporate fixed HRR

operations in neural networks

• Learning representations of tokens from data (cf

sequence learning Plate 2003)

• Learning structural properties of data

• Learning transformations (cf Jane Neumann’s

work, Chris Eliasmith)

AAAI Symposium 2004 14

Convolution kernels

• Introduced by David Haussler 1999

• Provide a similarity measure for structured
objects

• Examples:
– String kernel – similarity of two strings is proportional

to number of common substrings

– Tree kernel – similarity of two trees is proportional to
number of common subtrees

• Similarity measure can be expressed as dot-
product in very high-dimensional space

AAAI Symposium 2004 15

Convolution kernels (continued)

• This similarity measure can be computed in

polynomial time (dynamic programming)

• Using Support Vector Machines, can find linear

classifiers in the high-dimensional space (without

ever having to explicitly construct vectors in that

space)

• Interesting large scale applications: document

classification, parsing, gene analysis

AAAI Symposium 2004 16

Relationship between HRRs &
convolution kernels

• HRRs can approximate a convolution kernel

• Consider an all-substring kernels (substrings are

ordered but non-contiguous)

• Two strings: abc & adc

• All-substring convolution kernel contains 11

features:

– abc, adc, ab, ac, bc, ad, dc, a, b, c, d

• abc: 10111001110

• adc: 01010111011 (overlap is 3: ac, a, c)

AAAI Symposium 2004 17

HRR similarity x convolution kernel
• With HRRs, use uncorrelated high-d vectors for a, b, c, d

(with Euclidean length 1)

• Represent strings as superposition of bindings of all
substrings (use a non-commutative form of convolution so
that a*b v b*a)

abc = a*b*c + a*b + a*c + b*c + a + b + c
adc = a*d*c + a*d + a*c + d*c + a + d + c
abc ¸ adc = (a*b*c + … + b + c) ¸ (a*d*c + a*d + … + c)

x a*c ¸ a*c + a ¸ a + c ¸ c

x 3

(terms like a*c ¸ a*d & a*c ¸ a & c ¸ a are all approximately
zero because of initial choice of vectors and randomizing
property of convolution)

AAAI Symposium 2004 18

Comparison of HRR similarity and
convolution kernels

• Convolution kernel:
– each combinatorial feature in a single numeric element in a very

high-d vector (discrete similarity of features)

– vectors in high-d space usually not explicitly computed

• HRR similarity:
– use wide pattern to represent each combinatorial feature

– should use relatively few combinatorial features

– computing dot-product similarity very fast

– continuous similarity comes for free:

if a is similar to a’, then a*b will be similar to a’*b

– possible to use neural-net learning to learn representations of
base vectors (by back propagating through convolution)

– although HRR similarity only approximates the convolution kernel,
it is still a valid kernel function for SVM because it is a dot product

AAAI Symposium 2004 19

Large scale applications

• Working on real applications has a number of

advantages:

– focuses attention on important aspects of techniques

– allows meaningful comparison among very different
approaches

– helps to promote good approaches

• Lots of data is now available!

– Language (textual) data

– Biological data (genetic and gene expression)

AAAI Symposium 2004 20

Available data sets and applications
• Text classification

– Reuters 21578: publically available, widely used

– TREC data sets: yearly conferences since early 90’s, very large data

sets, lots of experiments, not free

• Word sense disambiguation

– “Senseval” project: publically available data, 3 conferences

• Parsing, e.g., using Penn Treebank and annotations

• Part-of-speech (POS) tagging: tons of data, many good systems (not
perfect though)

• Predicate argument classification (e.g., PropBank project, 1m words)

• Note that SVM techniques have been applied to all the above

• Another possible application: help system for an open-source
software project, e.g., statistical system R: hundreds of add-on
packages, thousands of functions

AAAI Symposium 2004 21

Example

• Word sequence kernels (Cancedda, Gaussier, Croutte & Renders,
2003) (also see character string kernels Lodhi, Saunders, Shawe-
Taylor, Christianini & Watkins, 2002)

• Applied to subset of Reuters 21578 (newswire documents with
categories)

• Performance measure was recall & precision & overall measures on
text classification

• Kernels were words & word substrings, with gaps

• Examples of questions addressed:

– when using pairs of words as features, does order matter?

• using order impairs performance

– do higher order features (word pairs, triples) help?

• help precision, hurt recall, hurt overall

AAAI Symposium 2004 22

END!

AAAI Symposium 2004 23

Connections: Real HRRs{Phase
HRRs

• HRRs with real values (n elements in vector)
– normalization: normalize whole vector to have

Euclidean length of one

– element values normally distributed with mean 0 and
variance 1/n

– superposition: elementwise addition

– binding: circular convolution (each element of z is the
sum of n pairs of elements of x and y)

– similarity: dot-product

– If no normalization, phase HRRs (freq. domain) are
equivalent to real HRRs (spatial domain) (via FFT)

AAAI Symposium 2004 24

Connections: Binary spatter code {
Quantized Phase HRRs

• Kanerva’s Binary spatter code (1996)

– binary vector elements, 50% density

– superposition: majority function (could involve several
arguments)

– binding: exclusive-OR

– similarity: number of matching elements

– equivalent to phase HRRs quantized to two values: +1
and –1

AAAI Symposium 2004 25

Other ways of implementing binding

• Tensor products (Smolensky 1990)

– binding is outer-product

• RAAMs (Pollack 1990)

– roles are weight matrices

– fillers are activation vectors

– binding is matrix-vector multiplication

• Random Sigma-Pi networks (Plate 1994, 1998)

– element of z is sum of n randomly selected pairs of x-y

elements

AAAI Symposium 2004 26

Domain independent procedures for
feature construction

• LSA (Latent Semantic Analysis) (Landauer,
Deerswester, Dumais & colleagues)

• Constructs vector reps for words such that similar
words are represented by similar vectors

• Based on principle component analysis of raw
document frequency vectors: e.g. 8 documents
– tiger: 0 0 1 0 0 2 0 0: occurred once in 3rd

document and twice in 6th document

– lion: 0 1 1 0 0 1 0 0: occurred once in 2nd, 3rd &
6th document

AAAI Symposium 2004 27

LSA continued

• Obtain more compact vector reps for words in

terms of the principal components of raw feature

vectors

• Ways to generalize:

– Elements of raw representation vectors are contexts in
which objects may appear

– Use other context matrices, e.g., co-occurrence matrix

1001020…

0010021…

0101210…

words

documents

AAAI Symposium 2004 28

Summary

• Can represent relational structure (& nested

structure) in Euclidean vector space

• Representations for composite objects are

constructed compositionally

• Can capture similarity of composite objects –

essential for learning

• A wide range of representational techniques

• Domain independent techniques for feature

construction are available

