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Overview

A general method for representing structured
relational data in finite dimensional Euclidean
vector spaces (“flat” vectors)

Interesting properties: similarity, transformations,
etc.

Learning
Relationships to structural kernel methods
Potential large-scale benchmark problems
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Motivation

* Intuition is that connectionist-style models feel more right
than symbolic models
— flat vector representations can capture gradations of meaning
— have techniques for learning
+ learning the flat vector representations
* learning to perform tasks using those representations
» Fodor & Pylyshyn had some valid points; claims:
— compositionality is important
* recursion, role-filler bindings
— no good connectionist representation for compositional structure
— any connectionist representation will be just implementation details

e Questions | tried to answer

— how can compositional structure be represented in flat vectors?

— is this anything more than implementation details in a symbolic
system?
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How to represent structured relational

data in Euclidean vector spaces

» Vector space representations typically have:
— vector addition (superposition)
— scalar multiplication
— distance function
— normalization (sometimes)
» To represent structure, also need:
— vector multiplication (for binding)
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Binding to represent structure

Consider representing relational structure, e.g.,
(bit fido john)

Superposition (l.e., bite+john+fido) not suitable -
- looses binding info

With a binding operation (as well as

superposition) can use role filler bindings:
agent * fido + object * john

Can also represent sequences, e.g., abc:
pl*a+p2*b+p3*c or ata*b+a*b*c
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Properties of binding operation

a*b must not be similar to a or b (in contrast to
superposition)

nice if a*b is similar to a*b’ to extent that b is
similar to b’

want inverse so that a*(a*b) = a (or approx)
can have arbitrary numbers of roles in relations

if a*b is a vector of same dimension as aandb
can have recursive relations:
(believe mary (bit fido john))
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Implementing binding (multiplication)

» Holographic Reduced Representations in
frequency space

 Rotor values (x; is a complex value)
« Useful normalization is unit magnitude |x;|=1
« Vector multiplication is elementwise multiplication
-- addition of phase angles * _
z=X*y if zi;=x"Yy; L= a+0
- Superposition is elementwise addition --

ciphaseangies () -

~
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Summary of operations

» Vectors: elements are phase angles

» Superposition: averaging of phase angles

» Binding: addition of phase angles

« Normalization: all elements have unit magnitude

 Similarity: sum of cosines of elementwise angle
differences

* Represent relational structure by superposition of
role-filler bindings

« Decode structures using inverse of binding
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Similar systems

» Binary Spatter Codes (Pentti Kanerva 1996)
« Multiplicative binding (Ross Gayler 1998)

« APNNSs & Context dependent thinning (Dmitri
Rachkovskij & Ernst Kussul 2001)
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Interesting properties

« Similarity -- design representation to have desired
similarity properties
» Fast (linear time) methods for:
— Similarity (dot-product)
— Structure transformations
— ldentification of corresponding entities
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Designing similarity

“Natural” similarity over relational structure:

— similar entities contributes to similarity

— similar structure contributes to similarity

— similar entities in similar roles contributes to similarity
Get this with role-filler binding representations, if we add
in fillers:

bite + fido + john + agent*fido + object*john
Can use this scheme recursively

These representations for hierarchical structures can
model human performance on analog recall

— similarity is sensitive to both contents and structure

— see Plate 2003
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Fast operations

Similarity — dot product similarity reflects structural and
surface similarity

Can do structure transformations with learning or with
straightforward vector algebra

(rel; xy) - (rel, y x)

agt,*x+obj;*y - agt,*y+obj,*x
transforming vector is (agt,**obj,+obj,*agt,)
|dentification of corresponding entities

E.g., x is involved in structure A, what is in the
corresponding position in structure B?

(x1*A)1*B
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Learning

Theoretically easy to incorporate fixed HRR
operations in neural networks

Learning representations of tokens from data (cf
sequence learning Plate 2003)

Learning structural properties of data

Learning transformations (cf Jane Neumann’s
work, Chris Eliasmith)
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Convolution kernels

Introduced by David Haussler 1999

Provide a similarity measure for structured
objects
Examples:

— String kernel — similarity of two strings is proportional
to number of common substrings

— Tree kernel — similarity of two trees is proportional to
number of common subtrees

Similarity measure can be expressed as dot-

product in very high-dimensional space
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Convolution kernels (continued)

» This similarity measure can be computed in
polynomial time (dynamic programming)

» Using Support Vector Machines, can find linear
classifiers in the high-dimensional space (without
ever having to explicitly construct vectors in that
space)

* Interesting large scale applications: document
classification, parsing, gene analysis
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Relationship between HRRs &
convolution kernels

 HRRs can approximate a convolution kernel

« Consider an all-substring kernels (substrings are
ordered but non-contiguous)
» Two strings: abc & adc

 All-substring convolution kernel contains 11
features:
— abc, adc, ab, ac, bc, ad, dc, a, b, c, d

« abc:10111001110

* adc: 01010111011 (overlapis 3: ac, a, ¢)

~
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HRR similarity &~ convolution kernel

« With HRRs, use uncorrelated high-d vectors for a, b, c, d
(with Euclidean length 1)

» Represent strings as superposition of bindings of all
substrings (use a non-commutative form of convolution so
that a*b = b*a)

abc=a*b*c+a*bh+a*c+b*c+a+b+c
adc=a*d*c+a*d+a*c+d*c+ta+d+c
abc-adc=(a*b*c+...+b+c) - (a*d*c+a*d+... +¢)
~a‘c-a‘c+a-a+c-cC
~ 3
(terms like a*c - a*d & a*c - a & c - a are all approximately
zero because of initial choice of vectors and randomizing
property of convolution)

- J
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Comparison of HRR similarity and

convolution kernels

e (Convolution kernel:

— each combinatorial feature in a single numeric element in a very
high-d vector (discrete similarity of features)

— vectors in high-d space usually not explicitly computed
« HRR similarity:
— use wide pattern to represent each combinatorial feature
— should use relatively few combinatorial features
— computing dot-product similarity very fast
— continuous similarity comes for free:
if a is similar to a’, then a*b will be similar to a™*b

— possible to use neural-net learning to learn representations of
base vectors (by back propagating through convolution)

— although HRR similarity only approximates the convolution kernel,
\_ it is still a valid kernel function for SVM because it is a dot product /
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Large scale applications

» Working on real applications has a number of
advantages:
— focuses attention on important aspects of techniques

— allows meaningful comparison among very different
approaches

— helps to promote good approaches
» Lots of data is now available!
— Language (textual) data
— Biological data (genetic and gene expression)
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Available data sets and applications

+ Text classification
— Reuters 21578: publically available, widely used

— TREC data sets: yearly conferences since early 90’s, very large data
sets, lots of experiments, not free

» Word sense disambiguation
— “Senseval” project: publically available data, 3 conferences
« Parsing, e.g., using Penn Treebank and annotations

+ Part-of-speech (POS) tagging: tons of data, many good systems (not
perfect though)

» Predicate argument classification (e.g., PropBank project, 1m words)
* Note that SVM techniques have been applied to all the above

» Another possible application: help system for an open-source
software project, e.g., statistical system R: hundreds of add-on
packages, thousands of functions
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Example

Word sequence kernels (Cancedda, Gaussier, Croutte & Renders,
2003) (also see character string kernels Lodhi, Saunders, Shawe-
Taylor, Christianini & Watkins, 2002)

Applied to subset of Reuters 21578 (newswire documents with
categories)

Performance measure was recall & precision & overall measures on
text classification
Kernels were words & word substrings, with gaps
Examples of questions addressed:
— when using pairs of words as features, does order matter?
* using order impairs performance
— do higher order features (word pairs, triples) help?
* help precision, hurt recall, hurt overall
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END!
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Connections: Real HRRs=Phase

HRRs

« HRRs with real values (n elements in vector)

— normalization: normalize whole vector to have
Euclidean length of one

— element values normally distributed with mean 0 and
variance 1/n

— superposition: elementwise addition

— binding: circular convolution (each element of z is the
sum of n pairs of elements of x and y)

— similarity: dot-product
— If no normalization, phase HRRs (freq. domain) are
equivalent to real HRRs (spatial domain) (via FFT)
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Connections: Binary spatter code {

Quantized Phase HRRs

« Kanerva’'s Binary spatter code (1996)
— binary vector elements, 50% density

— superposition: majority function (could involve several
arguments)

— binding: exclusive-OR
— similarity: number of matching elements

— equivalent to phase HRRs quantized to two values: +1
and —1

AAAI Symposium 2004 24



e A
Other ways of implementing binding

» Tensor products (Smolensky 1990)
— binding is outer-product

« RAAMs (Pollack 1990)
— roles are weight matrices
— fillers are activation vectors
— binding is matrix-vector multiplication
« Random Sigma-Pi networks (Plate 1994, 1998)

— element of z is sum of n randomly selected pairs of x-y
elements

- J
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Domain independent procedures for

feature construction

« LSA (Latent Semantic Analysis) (Landauer,
Deerswester, Dumais & colleagues)

» Constructs vector reps for words such that similar
words are represented by similar vectors

» Based on principle component analysis of raw
document frequency vectors: e.g. 8 documents
—tiger:0 0 1 0 O 2 O O:occurred once in 3rd
document and twice in 6th document
—1lion: 01100 1 0 0:occurred once in 2nd, 3rd &
6th document

- J

AAAI Symposium 2004 26




» Obtain more compact vector reps for words in
terms of the principal components of raw feature

vectors

« Ways to generalize:
— Elements of raw representation vectors are contexts in

LSA continued

documents

1001020..

words | 0010021..
0101210...

which objects may appear

— Use other context matrices, e.g., co-occurrence matrix

J
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» Can represent relational structure (& nested
structure) in Euclidean vector space

» Representations for composite objects are

Summary

constructed compositionally

» Can capture similarity of composite objects —

essential for learning

» A wide range of representational techniques
» Domain independent techniques for feature

construction are available
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